
AD-A257 598
AVAL POSTGRADUATE SCHOOL

Monterey, California

2'CR ADAý3 D T

THESIS

MICROCOMPUTER SIMULATION
_ OF A FOURIER APPROACH TO OPTICAL

WAVE PROPAGATION

by

John G. Upton

(0June 1992

Thesis Advisor: John P. Powers

Approved for public release; distribution is unlimited

UNCLASS.FIED
SECURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATVON PACE OMB No. 0o04-0188

Ia. REPORT SECURITY CLASSIFICATION 4. ..ESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECUR]TY CLASSIICATION AUT1ORITY 3. D-STRIBUTION/AVAILABW.TY OF REPORT

Approved for public release;
'b. DECT.ASSIFICATIONIDOWNGRADING SCHEDULE distribution is unlimited.

4. PER•ORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORG NL.ATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6h. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate School 32 Naval Postgraduate School
6c. ADDRESS (City. State, and ZIP Code) 7b. ADDRESS (City. State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000
8S. NAME OF FUNDINGISPONSORING bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENIFICAT.TN NUMBER

ORGANIZATION (If 8PpleCable)

So. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERSIPROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
Microcomputer Simulation of a Fourier Approach to Optical Wave Propagation

12. PERSONAL AUTHOR(S)
UPTON, John G.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (YeMontbDay) 15i TVE COUNT
Master's Thesis FROM _ TO _ - June 1992

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of
the Department of Defense or the U.S. Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
•E• GROUP sUB-GROUPD GU Fourier optics, spatial impulse response,diffraction, transient waves,

optical propagation
19. ABSTRACT (Continue on reverse if ne.ceary and id-ntify by block number)

This thesis uses spatial impulse response theory adapted from continuous-wave Fourier diffraction theory
as the basis for a microcomputer program to model pulsed optical wave propagation. Programs to generate
uniform circular and unifom• square excitation functions are included, along with examples of the spatial
impulse response for each. Additionally, two new excitation functions with circular Gaussian and circular
Bessel spatial distributions are modelled for use in future research. All programs have been written using the
MATLAB software package. This effort provides a means to analyze the transient optical wave propagation of
a spatially filtered optical source.

20. DISTRIBUTIONIAVAILABIrTY OF ABSTR•ACT 21. ABSTRACT SECURITY CLASSIFICATION
[UNCLAssIFEDN•LMNTED SAME AS RI" [DTnc USERS UNCLASSIFIED

22. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (nclude Area Code) 7 . OFFICE SYMBOL
POWERS, John P. (408) 646 - 2679 EC/Po

DD Form 1473, JUN 86 Previct editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGF

S/N 0102-LF-014-6603 Unclassified

Approved for public release; distribution is unlimited.

IMICPDC)0R=~ SIMLMATON

OF A FWURIER APPACHI TO OPTICAL
WAVE PROPAGATION

by

Jckm G. Upton
Lieutenant Colonel, United States Marine Corps

B.S., United States Naval Academy, 1972

Submitted in partial fulfilhlent
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGIERING

from the

NAVAL POSTGRAIDJATE SCHOOL
June 1992

Author:
John G. Up &n

Approved by:
"oýhn P. Powers, Thesis Advisor

Ron J.,/~pr Theks Co-Advisor

Michael A. Mor, Chainan
Department of Electrical and Cowputer Engineering

ii

Mis thesis uses spatial impulse response theory adapted frcm

ccrtimaous-wave Fourier diffraction theory as the basis' for a

micxoccqpter program to model transient optical wave propagation.

P-rogrars to generate uniform circular and uniform square excitation

functions are inc-luded, along with exmnples of the spatial impilse

response for each. Additionally, two new excitation functions with

circular Gaussian and circular Bessel spatial distributions are modelled

for use in future research. All programs have been written using the

MATIAB software package. This effort provides a means to analyze the

transient optical wave propagation of a spatially filtered optical source.

Aocession For
NTIS GRA&I
DTIC TAB 0
Unannou•uoed 0Justif icat'ion-

By

Dist ribut ion/

Avallabill'ty CeCodes
Dis v1 and/ora

iii D8t I peai4J

TABLE OP CONTENTS

I. INTRODUCTION............ 1

II. PROBLEM DESCRIPTION 6

A. GEOMETRY............ 6

B. LINEAR SYSTEMS SOLUTION APPROACH 7

C. IATHEMATICAL DERIVATION 12

III. PROGRAM DESCRIPTION 21

A. OVERVIEW OF MATLAB 21

B. DISCUSSION OF PROGRAM MODULARITY 23

C. FUNCTIONAL EXPLANATION OF OPTFIL 25

D. FUNCTIONAL EXPLANATION OF OPTPROP 35

1. Input variables and functions 35

2. View at a single point in time 39

3. Time incrementing 47

IV. NUMERICAL SIMULATION 63

A. EXPLANATION OF DEFINING PARAMETERS 63

B. EXECUTION TIME 64

C. OVERVIEW OF AXUM 65

D. EXA14PLES 66

iv

V. SU4MMARY . 70

APPENDIX A. EXAMPLES OF BESSEL FILTERS 72

APPENDIX B. EXAMPLES OF DERIVATIVE FILTERS 74

APPENDIX C. DETAILED EXPLANATION OF OPTFIL 76

APPENDIX D. DETAILED EXPLANATION OF OPTPROP 81

APPENDIX E. SOURCE CODE FOR OPTFIL 86

APPENDIX F. SOURCE CODE FOR OPTPROP 89

APPENDIX G. SOURCE CODE FOR EXCITATION FUNCTIONS . . . 95

LIST OF REFERENCES 100

BIBLIOGRAPHY 102

INITIAL DISTRIBUTION LIST 103

v

LIST OF TABLES

Table I. 7AIUES OF DEFINING PARAMETERS. 65

vi

LIST OF FIGURES

Figure 1. Source and observation planes 7

Figure 2. Block diagram of impulse response 11

Figure 3. Block diagram of spatial impulse response. 11

Figure 4. Block diagram of general solution 11

Figure 5. Time-varying Bessel filters at two values of
time 19

Figure 6. Time-varying derivative filters at two values
of time. 20

Figure 7. Object with off-center origin (for viewing). 31

Figure 8. Shifted object (for Fourier transform
calculation) 31

Figure 9. Base array configuration 32

Figure 10. Bessel filter at time slice 1 32

Figure 11. Bessel filter at time slice 3 33

Figure 12. Bessel filter at time slice 8 33

Figure 13. Bessel filter at time slice 23 3

Figure 14. SHFTINPUT (input in center geometry). . . 37

Figure 15. INPUT (input in corner geometry) 37

Figure 16. FINPUT (transformed input in corner
geometry) 38

Figure 17. FSHFT INPUT (shifted transformed input in
center geometry) 38

Figure 18. FSHFT OUTPUT1 at time slice 1 (product of
Bessel filter and transformed input in transform
domain). 43

vii

Figure 19. DERFIL (derivative filter) 43

Figure 20. FSHFTOUTPUT2 (product of derivative filter
and transformed input in transform domain). 44

Figure 21. SHFTOUTPUT1 (inverse transform of product of
Bessel filter and transformed input). . . . 44

Figure 22. SHFT OUTPUT2 (inverse transform of product of
,derivative filter and transformed input).. 45

Figure 23. •tIFT OUTPUT (sum of SHFTOUTPUT1 and
SHFFTOUTPUT2). 45

Figure 24. SHFTOUTABS (magnitude of SHFTOUTPUT). 46

Figure 25. DERFmL at time slice 1 (derivative
filter). 49

Ficare 16. DE'_FIL at time slice 3. 49

1ic,•re ,7. DERFIL at time slice 8. 50

Figure 3 DER FIL at time slice 23. 50

Figure 2c.. FSHFTOUTPUT1 at time slice 1 (product of
Bessel filter and transformed input). . . . 51

Fi•.ire 30. FSHFTOUTPUT1 at time slice 3. 51

F'igure J1. FSHFTOUTPUT1 at time slice 8 52

Firure 32. FSHFTOUTPUT1 at time slice 23 52

Figure 33. SHFT OUTPUT1 at time slice 1 (inverse
transform of product of Bessel filter and
transformed input) 53

Figure 34. SHFTOUTPUT1 at time slice 3.53

Figure 35. SHFTOUTPUT1 at time slice 8 54

Figure 36. SHFTOUTPUTI at time slice 23. 54

Figure 37. FSHFTOUTPUT2 at ti..ie slice 1 (product of
derivative filter and transformed input).. 55

Figure 38. FSHFT_OUTPUT2 at time slice 3. 55

Figure 39. FSHFTOUTPUT2 at time slice 8. 56

viii

Figure 40. FSHFTOUTPUT2 at time slice 23. 56

Figure 41. SHFT OUTPUT2 at time slice 1 (inverse
transform of product of derivative filter and
transformed input). 57

Figure 42. SHFTOUTPUT2 at time slice 3 57

Figure 43. SHFTOUTPUT2 at time slice 8 58

Figure 44. SHFTOUTPUT2 at time slice 23. 58

Figure 45. SHFTOUTPUT at time slice 1 (sum of
SHFTOUTPUT1 and SHFT_OUTPUT2). 59

Figure 46. SHFTCUTPUT at time slice 3. 59

Figure 47. SHFT_OUTPUT at time slice 8. 60

Figure 48. SHFTOUTPUT at time slice 23 60

Figure 49. SHFTOUTABS at time slice 1 (magnitude of
SHFTOUTPUT). 61

Figure 50. SHFTOUTABS at time slice 3. 61

Figure 51. SHFTOUTABS at time slice 8. 6&

Figure 52. SHFTOUTABS at time slice 23 62

Figure 53. Input field for uniform circular spatial
excitation 68

Figure 54. Output field for uniform circular spatial
excitation. 68

Figure 55. Input field for uniform square spatial
excitation 69

Figure 56. Output field for uniform square spatial

excitation. 69

Figure 57. Time slice 1. 72

Figure 58. Time slice 3 72

Figure 59. Time slice 8 72

Figure 60. Time slice 18. 72

Figure 61. Time slice 23. 73

ix

Figure 62. Time slice 28. 73

Figure 63. Time slice 38. 73

Figure 64. Time slice 58. 73

Figure 65. Time slice 74

Figure 66. Time slice3. 74

Figure 67. Time slice8. 74

Figure 68. Time slice8. 74

Figure 69. Time slice 23. 75

Figure 70. Time slice 28. 75

Figure 71. Time slice 38. 75

Figure 72. Time slice 58. 75

x

I. INTRODUCTION

Lasers provide a readily available source of coherent

optical radiation for today's technologies. The output of

most lasers exhibit a spatial amplitude distribution which is

Gaussian. It is possible to spatially filter such a beam to

produce an alternatively shaped beam. Such a variation may

exhibit a circular or square uniform cross-section and either

of these could have an arbitrary spatial weighting

distribution. The utility of such filtering is unknown unless

the diffracted field distribution can be predicted at any

given distance.

Classical scalar diffraction theory provides a means for

approximating such a solution. Scalar theory has been shown

experimentally to yield accurate results when the diffracting

aperture is large compared to the wavelength and the field

locations are not too close to the aperture. Classical

diffraction analysis is a computationally cumbersome method,

however, due to the required solution of multi-dimensional

field integrals. For continuous waves, an alternative method

[Ref. 1) expresses the solution using the theory of linear

time-invariant systems. If the multi-dimensional Fourier

transform of the complex field distribution across any plane

is taken, the spatial Fourier components can be identified as

plane waves travelling in different directions. The field

amplitude at any other point is the sum of each of these

contributing waves, if the plane wave's phase shift during

travel is accounted for. Thus, the propagation phenomenon may

be regarded as a linear space-invariant system characterized

by a specific transfer function. This transfer function

behaves as a linear dispersive filter with a finite spatial

bandwidth. Development of devices which generate ultra-short

cptical pulses has encouraged the extension of this "Fourier

optics" concept to transient waves.

Previous efforts in applying a transfer function approach

to transient scalar wave propagation have focused primarily on

acoustic applications [Refs. 2,3]. The study of optical

diffraction effects utilizing this mathematical approach

p-oves to be a natural extension to that of acoustics.

Indeed, the ultrasonic solution is found to be a subset of the

optical solution.

A computationally efficient method to model such

ultrasonic propagation has been developed by Guyomar and

Powers [Refs. 2,3]. Relying upon linear systems theory and

using Fourier transforms to transition between the space and

spatial transform domains, the solution methodology is an

application of the general theory discussed above. It is, as

well, quite suitable for efficient computer implementation

since it uses Fourier transforms. The mathematical derivation

for the optics case in lossless, homogeneous material was

2

developed by Guyomar [Ref. 4] and is presented in detail in

the followipq chapter.

Computer models of transient acoustic wave propagation

have previously been written for both mainframe and mi.cro-

computer applications. An example of the latter by Merrill

[Ref. 5] was an early effort to investigate the feasibility of

generating solutions on microcomputers within a "realistic"

length of time (defined arbitrarily and, reesonably, to be

thirty minutes). An initial attempt was made using a

commercially available program named MATLAB. This is an

array-oriented program containing built-in functions, such as

the Fast Fourier Transform (FFT) and Bessel function

calculations. The capability to incorporate user-developed

functions and subroutines also exists. (Additional details of

MATLAB will be presented in the third chapter of this paper.)

However, because MATLAB memory utilization was limited to 640K

at that time, Merrill was forced to abandon the program and to

use Microsoft Fortran Version 3.31 to develop his model. The

desired maximum run time of thirty minutes was achieved.

[Ref. 5)

Advances in the capabilities of microcomputers, including

increased speed and enlarged RAM capacity, justified a follow-

on effort to develop the appropriate code in MATLAB to be run

on upgraded processors, such as the Intel 386/486 series.

Such a program would provide a convenient means of researching

optical diffraction field characteristics for any excitation

3

waveform. The specific goal of this thesis was thus defined--

to produce a MATLAB program modelling transient scalar optical

wave propagation. As no similar published results are known

to the author, test and verification of the output results

were accomplished by an informal comparison with available

unpublished data for the circular- and square-shaped spatial

excitation waveforms [Ref. 4]. In addition to these two

excitation functions, programs to generate a spatially

circular waveform with a selection of either a Gaussian or

Bessel amplitude distribution were to be developed for use in

further research.

The following chapter describes the wave diffraction

problem including the geometry involved, a discussion of the

application of linear systems theory, and the mathematical

derivation of the field solution utilizing the Fourier

approach. Chapter III commences with an overview of the

MATLAB language with particular attention paid to the

peculiarities in this application. A functional explanation

of the program follows within the same chapter. (Appendices

C and D contain a detailed explanation of the code.) Chapter

IV illustrates the final program outputs for one set of

defining parameters. Chapter V summarizes the effort and

discusses areas for future research. Throughout these

chapters, many figures are utilized to enhance the textual

descriptions. These figures can be found at the end of each

section within the appropriate chapter of the thesis.

A

Appendices contain further figures, copies of the elements of

the source code, and, as previously mentioned, a detailed

explanation of the code's formulation and operation. Lastly,

the code is included for each of the four excitation

functions.

5

II. PROBLEM DESCRIPTION

The general solution and explanation detailed here is

derived from that presented by Guyomar and Powers in Refs. 2

and 3. They, in turn, point out that the approach is based on

the spatial impulse response introduced by Stepanishen [Refs.

6,7,8,9] to describe acoustic propagation and reviewed by

Harris [Ref. 10]. All of these references were concerned with

acoustic propagation, but the optical field also may be

expressed as a temporal convolution of the time excitation

with the spatial impulse response. Guyomar and Powers' view

differs from Stepanishen's work in that linear systems theory

is used to point out the importance of the total impulse

response (and its equivalence to the Green's function). Also,

the expressions for the spatial impulse response functions are

found in the spatial transform domain. In this domain,

propagation of the wave will be seen to be the application of

two time-varying spatial filters to the spatial spectrum of

the input wave.

A. GEOMETRY

The problem utilizes the geometry illustrated in Fig. 1.

Given a separable source of excitation in the z=0 plane,

6

4o0(x,y,O,t) = S(X,y) T(t)

the irradiance, or strength of the optical field, at the

observation plane located a distance z from the source is to

be determined. Note that the excitation is separable in space

and time; it is not necessarily separable in x and y.

Propagation through a lossless, linear, and homogeneous medium

is assumed.

OBSERVATION
PLANE

7

/y
Sv ~~S/•XOURCE

PLANE

Figure 1. Source and observation planes.

B. LINEAR SYSTEMS SOLUTION APPROACH

It will be shown in the next section [Ref. 4] that the

field strength for this separable source can be expressed by

7

((x,y,z,t) = -S(x,y) T(t) * *g(x,y,z,t) (2)
x y t az

Here, the * indicates convolution over the variable appearing

directly below it and g(x,y,z,t) is the impulse response, or

Green's function, that both solves the wave equation and

satisfies the appropriate boundary conditions. Figure 2 shows

the relationships involved.

Factoring out T(t) and its associated temporal

convolution, O(x,y,z,t) is also given [Refs. 2,3] as

4(x,y,z,t) = T(t) h(x,y,z,t) (3)
t

where h(x,y,z,t) is the "spatial impulse response" and is

equal to

• * a~x~yz~t)(4)
h (x,y, z, t) = -s (x,y) 2 (xyzlt)x y az

where g(x,y,z,t) is the Green's function (or impulse

response). In a linear system, the relationship between the

spatial impulse response h(x,y,z,t) and the Green's function

g(x,y,z,t) is illustrated by the block diagram of Fig. 3.

Using the two-dimensional spatial Fourier transform of

Equation 4, and

g(f, f, Z,t) f •(•,) F az (,

O(x,y,z,t) can be written as

8

4(x,y,z,t) = T(t) t (6)

where the tilde notation indicates the transform of the

spatial function.

In the spatial frequency domain, the transform of the

spatial impulse response is

B(x Zy, zt) ={C}. 7

The two-dimensional spatial convolutions found in Equations 2

and 4 do not lend themselves readily to computer simulation,

due to the integrations involved. However, as suggested by

Equations 6 and 7, this difficulty can be overcome by taking

the appropriate two-dimensional spatial transforms using Fast

Fourier Transform (FFT) techniques.

Viewing Equation 7 once more, 9 is the angular spectrum of

the amplitude distribution of the input function; a@/az may be

thought of as the "propagation transfer function" related to

the medium of propagation. We will find that this propagation

transfer function behaves as a time-varying spatial filter

that increasingly attenuates the higher spatial frequencies of

the source as time increases [Refs. 2,3).

Figure 4 illustrates the concepts discussed thus far in

the time domain. To summarize, the general solution technique

begins with the wave equation for lossless media and requires

determining the Green's function (or the two dimensional

9

spatial transform of the Green's function) which solves the

wave equation and satisfies the boundary conditions.

The inverse transform of the product of the spatial

transform of the derivative of the Green's function and the

spatial transform of the input function will yield the

solution to the optical field values at the observation plane.

Equation 6 alone, or the combination of Equations 3 and 7,

shows this notion in mathematical form.

10

8 (x,y,0,t) Propagationa&XYt g(x,y~z,t)
_ _ _ _ &

boundary conditions

Figure 2. Block diagram of impulse response.

Propagation h(x,y,z,t) =-s(x,y) aOzt
s(y) (t) & xyz

boundary conditions

Figure 3. Block diagram of spatial impulse response.

s(x,y)T(t) Propagation
&

boundary conditions *(x,y,z) = T(t)t h(x,y,z,t)
C~q(XIYOZ,t)

S~~yT~) ytaz

Figure 4. Block diagram of general solution.

11

C. MATHEMATICAL DERIVATION

The primary source for the following discussion is

Guyomar's work in Ref. 4. Some few additions to the

mathematics have been added and the explanatory text expanded.

The appropriate wave equation, again assuming a lossless

propagation medium, is the Helmholtz equation g~.ven by

c2 at 2

The fields described by this wave equation are given by the

radiation integral. However, assuming a planar aperture, the

field O(x,y,z,t) may be written (Ref. 4)

(x,y,z, t) = (X°(x'y, 0,t) * * *
an x y g(x'Y" Z, t) (9)

*• *ag(x,y,z, t)-0 o(XJ-y/ Oft) *a (,V Z t
X t On

where o0(x,y,0,t) is the excitation function. Its scalar

amplitude distribution is known on the source plane. The

Green's function satisfying the wave equation and the boundary

conditions is g(x,y,z,t) and the partial derivative with

respect to n represents the normal derivative of the desired

function for planar geometry. For an observation plane

perpendlcuu -to the z-axis, the normal derivative will become

th- lerivative sith respect to z.

-n optical applications, the value of the field on the

s.rface o0 (x,y,O,t) is known. Therefore, it becomes desirable

12

to eliminate the first term of Equation 8 and to work solely

with the second term. This can be done by using the Green's

function which satisfies the condition that

gIz.O = o. (10)

The Green's function that meets this condition is

- -2 + (Z ()

9 _ C - _C_.

C C

The " " subscript associated with the g Green's function

symbol simply indicates the sign between the two terms, where,

if given different boundary conditions, a "+" would be more

appropriate. Note, also, the conventional use of the letter

"c" to indicate the speed of propagation. On the surface of

the source plane at z=O, this Green's function has the

following properties:

g-1...= 0 (12)

ag_ 8g2 (13)-*j•Iz.o -z

=_2z 6(t - R/c) _ 2z 6/(t - R/c) (14)
R3 cR2

where

Utilizing the Green's function g_, the field can be

written as

13

R = ýJ2 + Z2 (1s)

=V2 + y2 + Z2 (16)

4(~~~)* * * ag_(x,y,z, t) (17)
(X, y, Z, 0) = O -(X, y, Z, t) ***C9 XY ,0(7

X) t az

Substituting Equation 13 for ag_/az results in

(xyz,t) =t* * * 2z8(t-R/c)x y t R3 (18)
* * * 2Z 6(t -R/C)+ ýo(X,y, O, 0 z8(t2)cx y t cR2

S._.ice (f*g') (f*g)' = (f'*g), the order of the derivative in

the second term of Equation 18 may be interchanged, yielding

(X, y, Z,0 ýt) * * * 2z8(t-R/c)

xx t R (19)

+ ý/o* * *2z8(t - R/c)X Y t cR 2

Previously, h(x,y,z,t) had been defined as the spatial

impulse response (i.e., the linear response to an input which

is multi-dimensional in space, yet an impulse in time).

Recalling an excitation sourci .3eparable in space and time has

been assumed, this input is represented as

4o(X,y, o, t) = s(x,y)8 (t) (20)

Since the spatial impulse response is the convolution of the

input function and the Green's function (refer to Fig. 3), the

response may be expressed as

14

h(x,y,z,t) = s(x,y)* 2z 8(t - RIC)
x y R3 (21)

+ 81(t)[* s(XY) 2z 8(t- R/c)
t[ý x y cR2 I

Rather than attempting to perform the spatial convolutions

over x and y, the product shall be taken following the two-

dimensional spatial Fourier transform of Equation 21. This

transform results in

z Z t) = g(f, f,) 2zJo(p/c 2 t 2 - z 2)
,C12 0 (22)

+ J' [b(f, fy) 2zJo(p/c 2 t 2 - z2)

tl c2t I

where h is the two-dimensional spatial transfor-a of h, f. and

fy are the spatial frequencies, p is the radial spatial

frequency (=Ifx + f§), and the transform pair [Ref. 4]

F f"(t R- R/c) = Jo(P/c2 t 2 - z 2) (23)

has been utilized.

Recognizing that time convolution with the time derivative

of the delta impulse is identical with taking the derivative

of the function in the time domain, i.e.,

* (24)
f(t) *8(t) = f'(t) ,

t

the spatial impulse response can now be written as

15

h(x,y,z, t)

c 2t 2 f)J(Piict F Z2)H(t - Ij

+ F_1 gf , fXJop f.) zC 2 - Z2)H(t -zc)(2
atC2 t2

(215)

The expression H(t-z/c) is the Heaviside step function which

indicates that no output is possible until the propagation

wave has travelled the distance from the source plane to the

observation plane. This function assures causality at the

observation plane. Focusing on the second term of Equation

25, the partial derivative w~th respect to time, being

independent of the transform variable, is moved through the

transform so that the spatial impulse response, in its final

form, is expressed as

h(x,y,z, t) =
2Z F-1('{(fXfy)Jo(p•• 2 t 2

- Z 2)H(t - z/c)}C 2t2 -

+ 2[-F- Jo(pýIc&t2- z2)H(t - z/c)]
C 2 L a t

(26)

Viewing Equation 26, the calculation of the temporal

impulse response proceeds as follows:

1. The excitation function #0 (x,y,O,t) is separated into

its components s(x,y) and T(t), i.e., oo(x,y,Ot) =

s(x,y)T(t).

16

2. The distance z to the observation plane is chosen and

a value of time t is also chosen, where t is greater than or

equal to z/c.

3. Calculate the two-dimensional spatial transform of

s(x,y).

4. To calculate the first term on the right side,

multiply the transform by J 0(pIofte z).

5. Perform a two-dimensional inverse-transform on the

product and multiply the result by the constant 2z/(c 2t 2).

6. The second term requires several operations prior to

the inverse transform being performed. First, divide the

Bessel function by the time t. Next, the time derivative is

taken and the result is multiplied by the two-dimensional

spatial transform of s(x,y). At this point the inverse

transform is performed and its result is multiplied by the

constant 2z/c 2 .

7. Find the sum of the two terms, and thus the process is

complete for a single moment in time. Time may be incremented

as desired, and the process repeated from step 3.

Within the transform domain, the propagation equation may

be viewed as being composed of two time-varying spatial

"filters". The first term of Equation 26 shows the

transformed excitation function being multiplied by a Bessel

function whose argument varies with time. Figure 5

illustrates two examples of the filter at different times.

The filter is, in effect, collapsing in on itself as the

17

argument grows larger. Additional examples of this filter are

shown in Appendix A.

The partial derivative of the second term acts in a

similar vein. Pictorially, as seen in Fig. 6, it begins to

appear somewhat similar to that of the Bessel function with

the obvious difference that the center of the function at p=O

is no longer the peak value. Additional examples of this are

shown in Appendix B.

18

Figure 5. Time-varying Bessel filters at two values of
time.

19

4%

Figure 6. Time-varying derivative filters at two values
of time.

20

III. PROGRAM DESCRIPTION

This chapter addresses the formulation of the I4ATIAB

program written to model scalar optical wave propagation. No

in-depth knowledge of MATLAB is assumed and the discussion of

the program is as "functional" as possible. A detailed

explanation of the code is found is Appendices C and D.

Specific aspects of MATLAB which drove decisions concerning

the program is presented in the first section. This is

followed by a discussion of the program's modularity, which is

of significant importance. A functional discussion of each of

the program's two modules in separate sections completes the

presentation. Many figures are incorporated throughout the

chapter and they are found at the end of each applicable

section.

A. OVERVIEW OF MATLAB

MATLAB is an interactive software package developed by The

Mathworks, Inc. of Natick, MA. Its specific orientation is

for scientific and engineering numeric computations, and

problem solutions are expressed almost exactly as they are

written mathematically. As a result, many of the frustrations

and time-consuming development processes of conventional

programming are avoided. The name MATLAB stands for matrix

21

laboratory, and its basic data element is a matrix which does

not require dimensioning. Numerical analysis, matrix

computation, signal processing, and a graphics capability have

all been integrated. The user is also able to incorporate

self-developed functions, as has been done for the various

excitation functions. [Ref. 11]

Of critical importance to this project were the intrinsic

functions of two-dimensional FFT's (FFT2), Bessel function of

the first kind of order zero calculations, and 3-D graphics.

The Matlab User's Guide [Ref. 10] goes into some detail in

explaining the specific algorithm called by MATLAB's different

functions. It points out that when the row/column dimensions

of the matrix are a power of two, a high speed radix-two FFT

algorithm is used. When the dimensions are not even, a non-

power-of-two algorithm finds the prime factors of the

dimensions and computes the mixed-radix discrete Fourier

transform. It cautions that this latter process can become

quite time consuming, particularly as the size of the matrices

become larger. For this reason, the decision was made to work

with NxN matrices, where N is an even number.

MATLAB employs a backwards three-term recurrence equation

to calculate each value of the Bessel function when the order

is an integer. This routine is time consuming, given the size

of the matrices required and the number of values to be found.

Therefore, the program execution has been "modularized" in the

sense that these Bessel calculations are accomplished

22

separately, and the results, which are a function of radial

distance and time (see Equation 26), are stored to disk to be

called when the second module is executed. This has the

advantage of allowing a different excitation function to be

analyzed without recalculating the Bessel values. This will

be also be discussed futher in an upcoming section.

Additionally, MATLAB has no built-in function to calculate

the derivative of a multi-dimensional function. To complete

such an operation requires approximating the derivative

through a difference operation. The approach taken will be

explained in detail in a following section.

MATIAB's on-line graphics capability allows viewing

outputs immediately, rather than having to transport the data

into a separate graphics program. Unfortunately, MATLAB does

not numerically scale the axes when plotting the data in 3-D.

Hence, it is useful for comparing relative shapes, but an

alternative graphics program must be found if absolute

amplitudes are to be displayed. All subsequent figures have

been generated on a program called AXUM, produced by

TriMetrix, Inc. of Seattle, Wa. AXUM does have scaled axes,

along with many other features, some of which will be briefly

described in Chapter IV.

B. DISCUSSION OF PROGRAM MODULARITY

As previously pointed out, the program has been

"modularized" in an effort to separate the time-consuming

23

calculation of the Bessel filter from the remainder of the

operations.

The first module has been named OPTFIL for OPTical FILter.

It could just as easily have been designated BESSFIL for the

time-varying Bessel filter which it generates, but work is

also being done for an acoustic case, and the name provides a

simple means of differentiating between the two.

The second module completes the solution of the optical

field at the observation plane as it is defined by Equation

26. This code, named OPTPROP for OPTical PROPagation,

provides for a selection of a specific spatially-distributed

excitation function, transforms it via the FFT2 procedure,

generates the derivative type filter, performs the

multiplications with each of the filters, inverse transforms

the results, multiplies each term by its respective constants,

and, lastly, adds the two terms together for the output.

Thus, the output over the entire observation space is

computed. However, only data from the center row of the

resultant matrix (i.e., h(O,y,z,t)) is used to construct the

final output presentation. Each time increment builds this

center row information sequentially as columns of the output

data matrix. Such a display conforms with the output plots

most commonly seen in the acoustics literature.

24

C. FUNCTIONAL EXPLANATION OF OPTFIL

OPTFIL, in order to generate the time-varying Bessel

filter, must initially define the elements of the argument of

the Bessel function. These elements are "p", the spatial

radius of the filter; "c", the velocity of propagation (3E8

meters/second); "t", the incremental value of time; and I"zo!

the distance between the source plane and the observation

plane.

Of these, t requires additional stipulations since it is

incrementing. The Heaviside step function, H(t-(z/c)), is

simulated by commencing time at (z/c). The output plot, it

was decided, would illustrate the causality at the observation

plane by displaying a small number of initial time increments

with zero output. In the program this arbitrary number of

increments is defined as the variable "Step". Some maximum

time must be specified as well, and it is called "timemax".

The total number of time increments between the values of

"time zero" and timemax is expressed as the variable "M".

The value of M includes the number of increments specified in

Step, and so (M-Step) time "slices" are calculated between z/c

and timemax. An additional time-related variable is "t eps".

This was named for a time-epsilon added to each incremental

time slice for the purpose of calculating the derivative

spatial filter.

Some variables are utilized solely within OPTFIL; others

are needed by both OPTFIL and OPTPROP. Those in the latter

25

category are stored in a separate file called OPTBES which is

saved to the hard drive to be reloaded when OPTPROP begins

executing.

The dimension of the transform space and the calculation

of the variable "rho" are missing from the explanation thus

far. The transform space is expressed in terms of an INxNII

square matrix. Recall that to facilitate the FFT2

calculation, the matrix was to be of even dimensions. Because

MATLAB matrix indices begin with 1 rather than 0 (the upper

left entry being row 1, column 1 not row 0, column 0 as an

origin would require), a matrix of dimension NxN will have N

points and N-I segments in each row and column. At first

glance, the center of symmetry of the array would be at the

(N+1)/2 row and the (N+I)/2 column. But the use of an even

number of points means that this center of symmetry does not

have an array point associated with it. Therefore, the center

of the transform space, the variable "NO", was taken to be at

the position ((N/2)+l, (N/2)+1). For a 64x64 matrix, then,

the center is located at position (33,33) and spatial

frequency radius rho is measured radially outward from that

point. This forced arrangement where the defined center is not

the geometric center is illustrated with a circular function

in Fig. 7.

A Fourier Transform (or the inverse transform) performed

on such a function with a displaced center of symmetry would

calculate the amplitude correctly but the phase would be

26

inccrrect. This problem with the phase calculation can be

overcome by reorienting the function into a corner geometry,

as shown in Fig. 8. Here one can see the function centered at

what would be the (0,0) position, given a quadrant I

perspective. The FFT2 and IFFT2 algorithms within MATLAB

assume a replicated image beyond the matrix boundaries so that

mathematically the symmetry of the function is retained. The

transform of the re-oriented function has the correct

amplitude and phase.

Figure 9 depicts a 64x64 array base situated on the x,y

plane divided into four quadrants. The notion of the

quadrants is important because the matrix generated by OPTFIL

is symmetric in rho with respect to the center of symmetry.

As a result, the calculation for only one quadrant need be

done and flipping the data appropriately fills the remaining

quadrants. This actually becomes somewhat tricky because of

the fact that the quadrants are unequal in size, Quadrant II

consists of rows 1 through 33, and columns 1 through 33 for a

33x33 "subarray", while quadrant I includes rows 1 through 33,

and columns 33 through 64 for a 33x32 "subarray". Quadrant

III is different still with dimensions 32x33, and quadrant IV

is the smallest of the four as a 32x32. Again, the different

sizes result from the designation of element (33,33) as the

center of the transform space.

Calculation of rho is done in a straight-forward manner

due to a MATLAB function called "meshdom". This constructs a

27

matrix of an x,y grid incremented as specified out to a

specified distance. The grid elements in the program are

named "rhox" and "rhoy". Rhox and rhoy are the cartesian

sides of the radial length rho. Rho was arbitrarily defined

to be 200 frequency units in length for NO-1 poincs, and a

vector called "rho mi" was constructed with NO points so that

the largest quadrant could be properly sized. Rhom is the

input value for the meshdom function and, thereby, an NOxN0

sized matrix is created. Applying the Pythagorean theorem to

rhox and rhoy, rho at element (33,33) is zero; at element

(33,64), it is 200; and, at elements (33,1) and (1,33), it is

approximately 206.45. The maximum value of approximately

291.96 is found at (1,1), located in the largest of t,.e

quadrants, as this location is the farthest point from the

center at (33,33).

To continue with the calculation of the Bessel filter, the

rho value of each element in the x,y grid whose points are

defined by (rhox, rhoy) is multiplied by a constant FcTIT-zz

to form the argument for the Bessel function. After the

Bessel operator has been invoked for each element, the results

are contained within a temporary matrix called "TEMP". TEMP

is then flipped to fill in the quadrants of the NxN sized

transform space. The calculated NxN matrix is called PROP.

A numerical suffix is added to PROP to correl te the data with

"the time index, e.g., PROPlA, PROP5B. The additions of "A"

and "B" serve to differentiate between those matrices computed

28

using the values of time contained within the time vector and

those to which teps has been added to the time values. For

example, PROP22A is computed using the twenty-second value of

time in the time vector. PROP22B is computed using that same

time value plus teps.

The variable which changes from iteration to iteration is

time. Recall that the data commences with time z/c and

continues to timemax. The output PROP matrix for each value

of time is saved to disk contained within a file named

"p(N)x(time index) (A/B)". A numerical suffix is added to "p"

to delineate the size of the matrix (N) and to identify the

time slice from which it was formed. For example, file names

are of the form p64x1OA or p128x45B. In these two examples,

the matrices are of dimension 64x64 and 128x128, respectively.

The former contains-the output matrix PROPIOA and the latter

contains the output matrix PROP45B.

Examples of the Bessel filters, taken at time slices (1),

(3), (8), and (23) are illustrated in Figs. 10-13. The planar

appearance of the filter at time (1) is due to the fact that

the value of time is equal to z/c and the argument of the

Bessel function is zero. In each of the remaining

illustrations, the maximum value of 1 is found at the center

point of the transform space where the radial distance -ho is

equal to zero. The symmetry property is easily seen, as is

the progression of the filter "collapsing" in on itself as

29

more and more peaks continue to be formed. Additional

examples of the filter are contained in Appendix A.

30

Figure 7. Object with off-center origin (for viewing).

Figure 8. Shifted object (for Fourier transform
calculation).

31

1 33 64
- 1

QUADRANT QUADRANT

33- -Y

QUADRANT QUADRANT
III IV

64

x

Figure 9. Base array configuration.

- N

.,;gure 10. Bessel filter at time 3lice 1.

32

Ip 04

Figure 11. Bessel filter at time slice 3.

Figure 12. Bessel filter at time slice 8.

33

0/

Figure 13. Bessel filter at time slice 23.

34

D. FUNCTIONAL EXPLANATION OF OPTPROP

This discussion of the secon' program module, OPTPROP,

will be divided into three sections. The first addresses the

input variables and functions. The second section will be a

functional walk-through of the code, with many illustrations

to amplify the text. These figures reflect the calculations

at time (1), i.e., only at time z/c. With an understanding of

the variable names and the process, the third section will

then provide discussion and illustrations of the various

computational steps as time progesses. The specific time

slices selected for analysis are those for which the Bessel

filter results were portrayed-- time (1), (3), (8), and (23).

All figures are incorporated at the end of each sub-section.

1. Input variables and functions

The initial operation performed by OPTPROP is to load

from disk the variables utilized by both OPTPROP and OPTFIL.

Among other things, these variables establish the size of the

matrix, define the center point, and set the value of Step.

The entire time vector is also passed.

OPTPROP provides screen text to allow a keyboard

selection of any of the four possible excitation functions.

These are named Circle, Table, Circular Gaussian, and Circular

Bessel in accordance with their respective spatial amplitude

distribution. The final two were developed for future efforts

in this study, and no illustrations nor final outputs will be

35

shown for them. Once the input function has been chosen, the

program asks for either the diameter or the width, as

appropriate. Default values are shown in brackets. These

width values must be odd numbers for the input algorithms to

operate properly, and the screen text includes a reminder of

that.

The input generated was viewed via the built-in MATLAB

graphics. An example of a Circle with radius 17 in a 64x64

matrix is shown in Fig. 14. This is the input used in all the

following illustrations in this chapter, Appendix A and

Appendix B.

On the MATLAB display, the title "SHFTINPUT" wi~l

also be included. Any illustration, whether in the time

domain or the transform domain which has its peak in the

center of the %iewing quadrant is preceded by a SHFT modifier.

This is to differentiate that configuration from the one in

which preparation for the FFT2 operation has been done. The

corner geometry previously mentioned is shown for this Circle

input in Fig. 15. It, like every output which follows in the

program, can also be viewed; its title, due to the corner

geometry, is simply "INPUT". Once it has been transformed by

FFT2, it is then called "F_INPUT" for the frequency domain.

This is shown in Fig. 16. If shifted back to the center

configuration still within the frequency domain, the title is

"FSHFTINPUT". See Fig. 17. Only the shifted results will be

shown from this point on.

36

Figure 14. SHFTINPUT (input in centei geometry).

Figure 15. INPUT (input in corner geometry).

37

Figure 16. FINPUT (transformed input in corner
geometry).

'4•

Figure 17. FSHFTINPUT (shifted transformed input in

center geometry).

38

2. View at a single point in time

At this point, the program begins the loop through the

values of time to perform the calculations required by

Equation 26. The equation is repeated below for reference.

h (x,y, z,t) =
2z g (fX,)o(J- Ht - zH -t2c)

(27)

The A and B pairs of PROP matrices, containing the Bessel

filter data, are loaded from the disk into the RAM workspace

by calling the appropriate files, and ar#. renamed "vnamel" or

"vname2", respectively. Recall that the file names with an A

addendum to p(N)x(time index), such as p64xlA, contain the

PROP matrices formed by the value of time contained in the

time vector at that index. Those PROP matrices from files

appended with a B utilize the time value resulting from adding

t_eps to the value contained within the time vector.

The first term of the equation given above, called

"Fshft_outputl" in the program, is formed by the element-by-

element product of vnamel and Fshft input. Fshft input is

necessary rather than F input since the PROP matrix peak is in

the center oriented geometry. (One or the other of PROP or

F_input required adjustment so that the geometry was alike and

Finput was arbitrarily selected.) Fshftoutputl for time (1)

39

is shown in Fig. 18 (all figures shown in this sub-section

reflect time slice (1)). In this instance, Fshftoutputl is

identical to Fshft input because the Bessel filter is planar

with a value of 1. Figure 10 shows that Bessel filter.

Calculation of the second term was complicated by the

fact that MATLAB does not contain a function for the

derivative of a multi-dimensional object such as the Bessel

filter. For that reason, a difference approximation was

adopted. The equation given below illustrates the method.

The index of the value of time is denoted in the equation by

PROP (m) B _ PROP (m) At (M) + t~s t (M) 8

tops

In words, each PROP matrix of the PROP A/B

divided by its respective time. PROPA is subtracted L.Lum

PROPB and the result is divided by the time difference between

the two, which is t eps. Admittedly, this is a difference

approximation to the derivative, and further work could be

done in arranging a "two-sided" derivative, where plus and

minus teps are applied to a given reference PROP matrix.

This portion of the second term which contains the derivative

operation is called within the program Derfil for DERivative

FILter. An example of this filter is shown in Fig. 19.

Additional examples are contained in Appendix B. The product

40

of Der-f il and Fshft_input forms Fshft output2, which is shown

in Fig. 20.

In preparation for the IFFT2 operation, both

Fshftoutputl and Fshft output2 are converted to the corner

geometry and the inverse transform is then performed. Each is

multiplied in the same coding step by its respective constant

to form "outputl" and "output2". "Shft-outputl" and

"shftoutput2" are formed prior to the summation step which

forms "shft output". Each of these shifted versions is shown

in Figs. 21-23. Shft output is not what will be actually

observed since optical detectors are square law detectors. To

account for this, the program takes the magnitude of

shft output to form "shftoutabs". This final output for time

(1) is shown in Fig. 24.

Of this output matrix, only the NO row, h(, t), is

saved for inclusion in the plot which will depict the field

over time. The information is saved to one line of a matrix

called "output-plot". The final form of the matrix has,

following "Step" columns of zeros, the results from the center

of each solution matrix for the successive values of time in

successive columns. Thus, the final output plot shows the

field distribution of only the center line of the observation

plane's aperture over time, although the time-changing field

over the entire aperture has been calculated. Depiction of

the final output plot is reserved until Chapter IV. This

concludes the second section of the explanation of OPTPROP,

41

and wnat follows is a look at the solution steps previously

discussed as they appear over time.

42

Figure 18. FSHFT OUTPUT1 at time slice 1 (product of
Bessel filter and transformed input in transform domain).

:2I

Figure 19. DERFIL (derivative filter).

43

yo%

Figure 20. FSHFT OUTPUT2 (product of derivative filter
and transformed input in transform domain).

Figure 21. SHFTOUTPUT1 (inverse transform of product of
Bessel filter and transformed input).

44

Lz

Figure 22. SHFTOUTPUT2 (inverse transform of product of
derivative filter and transformed input).

Figure 23. SHFTOUTPUT (sum of SHrTOUTPUT1 and
SHFTOUTPUT2).

45

Figure 24. SHFTOUTABS (magnitude of SHFTOUTPUT).

46

3. Time incrementing

It is important to understand that the transient input

function may be viewed as a grid of point sources, each of

which is contributing equally to the output field. At any

position on the observati-rn plane, the output field is

initially formed by the source point closest to that location.

The field continues to be formed as time piogresses by those

source points successively more distant. Thus, the output is

the sum of the effects of all the point sources over a finite

period of time.

Examples of the Bessel filter have been shown in Figs.

10-13. Recall the description that the filter gives the

appearance of collapsing on itself as time progresses. The

derivative filter exhibits a similar tendancy over time, as

Figs. 25-28 illustrate. Fshft-outputl, which is the element-

by-element product of the Bessel filter and the transform of

the input function, becomes more narrow in the center, and the

adjacent oscillations smooth out (refer to Figs. 29-32). This

narrowing effect would lead one to believe that the spatial

transform of Fshftoutputl should broaden, and that is what

will be seen with shftoutputl in Figs. 33-36. Fshftoutput2,

which is the result of multiplying the derivative filter and

transform of the input element-by-element, has an enormous

magnitude (see Figs. 37-40). Shftoutput2 initially is quite

spiked (see Figs. 41-44), but begins to smooth out over time

47

and remains at least an order of magnitude larger than

shft-outputl. For this reason, the sum of the two,

shft output, is dominated by shft output2 throughout. Figures

45-4P illustrate this dominance. Shftoutabs is the magnitude

of shft_output (see Figs. 49-52).

48

Figure 25. DERFIL at time slice 1 (derivative filter).

Figure 26. DERFIL at time slice 3.

49

Figure 27. DERFIL at time slice 8.

Figure 28. DERFIL at time slice 23.

50

Figure 29. FSHFTOUTPUT1 at time slice 1 (product of
Bessel filter and transformed input).

Figure 30. FSHFTOUTPUT1 at time slice 3.

51

Figure 31. FSHFTOUTPUT1 at time slice 8.

Figure 32. FSHFTOUTPUT1 at time slice 23.

52

Figure 33. SHFTOUTPUT1 at time slice 1 (inverse
transform of product of Bessel filter and transformed
input).

Figure 34. SHFTOUTPUT1 at time slice 3.

53

Figure 35. SIIFT OUTPUT1 at time. slice 8.

Figure 36. SHFTOUTPUT1 at time slice 23.

54

I-•

Figure 37. FSHFT OUTPUT2 at time slice 1 (product of
derivative filter and transformed input).

Figure 38. FSHFTOUTPUT2 at time slice 3.

55

K

Figure 39. FSHFTOUTPUT2 at time slice a.

Figure 4v. FSHFTOUTPUT2 at time slice 23.

56

Figure 41. SHFTOUTPUT2 at time slice 1 (inverse
transform of product of derivative filter and transformed
input).

IZ1

--

Figure 42. SHFTOUTPUT2 at time slice 3.

57

Figure 43. SHFTOUTPUT2 at time slice 8.

Jare 44. SHFTOUTPUT2 at time slice 23.

58

Figure 45. SHFTOUTPUT at time slice 1 (sum of
SHFTOUTPUT1 and SH-FTOUTPUT2).

Figure 46. SHFTOUTPUT at time slice 3.

59

Figure 47. SHFTOUTPUT at time slice 8.

Figure 48. SHFTOUTPUT at time slice 23.

60

Figure 49. SHFTOUTABS at time slice 1 (magnitude of
SHFTOUTPUT).

:igure 50. SHFTOUTABS at time slice 3.

61

Figure 51. SHFTOUTABS at time slice 8.

Figure 52. SHFTOUTABS at time slice 23.

62

IV. NUMERICAL SIMULATION

This chapter addressess the output of the program for both

a circular and square excitation function, given a particular

set of defining parameters. The parameters used in the

simulation are explained in the first section. A brief

discussion of the execution time follows. The third section

presents some information about the graphics program AXUM

which was used to construct nearly all of the figures

presentp" throughout the thesis. Finally, the optical field

predictions for each excitation function are shown.

A. EXPLANATION OF DEFINING PARAMETERS

The defining parameters are those variables found at the

beginning of the OPTFIL code which either OPTFIL or OPTPROP

utilize for the basic problem setup. Examples of the

parameters include N, M, Step, timemax, etc.; each has been

addressed functionally in previous chapters. This discussion

will cite the specific values used in the numerical simulation

which produced the results shown at the end of this chapter.

The parameter N defines the number of points in the square

matrix and the value of N=64 was used for this case. As N

defines the number of data points, a 128x128 matrix would

provide greater resolution at a cost of longer computation

63

times. Further research to investigate whether the resolution

is warranted would be useful. The center of the matrix, NO,

was 33. Step, the number of time slices prior to z/c for

which a zero output would be recorded, was set at 3. A value

of 64 was selected for M whir-. resulted in 61 time slices (M-

Step) The distance between the source plane and the

observation plane, z. was set to 80 millimeters. This value

was determined by scaling the valus of z used in prior

acoustic simulations by the ratio of propagation speeds.

Timemax was determined in a similar fashion, although a bit

of trial and error was also necessary. Its value in this

thesis was 0.95 nanoseconds. Rho, also based on acoustic

work, was 200 spatial frequency units, and c, the speed of

light, was set to 3E8 meters per second. Teps -is the

smallest time value between successive Bessel filters for

which a measurable difference could be obtained. Anything

smaller meant that the subtraction of the two resulted in a

zero output. By such reasoning, teps was set to 23.5E-25

seconds. Table 3 summarizes the defining parameters and the

repective values used in this simulation.

B. EXECUTION TIME

Although no formal goal was set as far a desired maximum

execution time is concerned, it is naturally of interest. The

sequence of OPTFIL and OPTPROP for a 64x64 matrix and 61 time

slices was run both on an Intel 386/20 MHz machine with a math

64

Table I. VALUES OF DEFINING PARAMETERS.

PARAMETER VALUE DEFINITION

N 64 size of the square matrix

M 64 total number of time slices

z 80 mm distance from source plane
to observation plane

time max 0.95 ns maximum observation time

rho 200 spatial radius

c 3e8 m/s velocity of propagation

teps 23.5e-25s difference equation time
value

Step 3 time increments prior to z/c

co-processor and on an Intel 486/33 MHz. The 386/20 required

slightly over forty minutes to generate all the Bessel filters

and ten minutes to complete OPTPROP to the final output. The

486/33 ran approximately five times faster needing slightly

less than eight minutes for OPTFIL and a bit oer 2 minutes

for OPTPROP.

C. OVERVIEW OF AXUM

An alternative graphics program was required to produce 3-

D plots with scaled vertical axes, since MATLAB 3-D mesh

displays do not incorporate that feature.

AXUM is an advanced technical graphics and data analysis

program produced by TriMetrix, Inc. It requires a minimum of

512K of memory and generates 3-D contour plots in a relatively

65

straightforward fashion [Ref. 11]. Data is imported into AXUM

by first storing the MATLAB data in ASCII format from OPTPROP.

This was easily done, and there are several examples of the

coding steps necessary included in the source code in Appendix

F.

Once the machinations of data manipulation, axc-s

definition, scaling and labeling, et al. were accomplished, a

truly useful feature was found in a menu entitled ". dit

Graph". It allowed interactive modifications to be done which

includes changing the perspective either horizontally or

vertically. This capability was used to orient the

SHFTOUTPUT illustrations of the previous chapter by rotating

the axes vertically.

D. EXAMPLES

The two source shapes to be presented are the uniform

circular excitation and the uniform square excitation. Figure

53 illustrates the circular -ase with a diameter of 17 shown

previously in Chapter 3. Figure 54 shows the calculated

spatial impulse response, given the defining parameters cited

in Suction A above.

Recall that this displays the time progression of

h(O,y,z,t) only, for each matrix generated per time slice. As

expected, it is nearly spatially symmetrical, and, over time,

the strength fades to zero. "Noise" is present between the

outboard "tails" and the center of the response. Added

66

resolution may smooth that, in addition to the other jagged

edges. Note also the decided increase in amplitude as the two

inboard tails cross. This overall shape compares favorably

with that found by Guyomar [Ref. 4].

The uniform square excitation is shown in Fig. 55. This

particular one has a width of 25 on a 64x64 base. The output

(see Fig. 56) is smoother than that of the circular piston

with less signal variations seen throughout. The magnitude of

the crossing middle tails is much less pronounced, yet, there

is an odd increase in magnitude in the vicinity of the

crossing. The fact that the crossing occurs at a later point

in time can be explained by the wider excitation function.

Again, the field strength tends to zero as time progresses.

This chapter has presented the optical field strength

prediction for a particular set of defining parameters, using

the uniform circular and uniform square excitation functions

of specified spatial width. The width of either excitation

function can be easily uhanged to study the associated effect

on the field. In addition, two other excitation functions,

with circular Gaussian and circular Bessel spatial

distributions, are available. The resultant field strength

predictions using these latter two are left for future

investigation.

67

Figure 53, Input field for uniform circular spatial
excitation.

QI

Figure 54. Output field for uniform circular spatial
excitation.

68

0 C

Figure 55. Input field for uniform square spatial
excitation.

Figure 56. Output field for uniform square spatial
excitation.

69

V. SUMMARY

This thesis investigated the possibility of solving

complex simulations of scalar optical wave propagation

utilizing the MATLAB program. Such a program was written in

two sections, OPTFIL and OPTPROP, modularized in the sense

that the more time-consuming process runs independently of the

other. The results of the OPTFIL are stored to disk to be

recalled by OPTPROP, as OPTPROP begins to run. A change in

the excitation function, given a particular propagation

geometry, does not require running both segments of the

program but only the less time-intensive of the two (OPTPROP).

This allows for a more rapid evaluation of the field

distribution for numerous trials. Although no particular goal

for a maximum run time was established, the results were

satisfactory. This was particularly so on an Intel 486/33 MHz

machine which ran both segments of the program in ten minutes

and the OPTPROP alone in slightly over two minutes.

The systems theory supporting the concept of a spatial

impulse response was presented, along with the mathematical

derivation of the solution appropriate for an optical

application. A functional discussion of tha program was given

in the body of the thesis for those readers whose interest is

not in the specifics of the code. Appendices C and D do

contain such specifics. Many figures have been incorpcrated

70

to augment the discussion of the program's operation. The

spatial impulse responses for both a circular and a square

uniform spatial excitation were computed. The outputs agreed

favorably with previously computed results [Ref. 4]. These

responses have been plotted in both 2-D and 3-D and a brief

analysis presented.

Future investigation is open in several areas. The size

of the base matrix should be increased to 128x128 to provide

for additional resolution. A "two-sided" derivative approach

to the difference equation may smooth the results somewhat.

Work thus far has been limited to a square aperture but

results with a circular base could prove of interest. A true

understanding of the propagation will not be achieved until a

means to show the results from the entire field, not just the

center portion, is developed. Achieving this, detailed data

analysis can progress.

71

APPENDIX A. EXAMPLES OF BESSEL FILTERS

This appendix L)ntains additional examples of Bessel

filters. The value of time at which each has been calculated

is tiofnd in the figure caption.

Figure 5?. Time slice 1. Figure 58. Time slice 3.

1

Figure 59. Time sl-;ce 2 '?igure 60. Time slice 1b.

72

Figure 61. Time slice 23. Figure 62. Time slice 28.

Figure 63. Time slice 38. Figure 64. Time slice 58.

73

APPENDIX B. EXAMPLES OF DERIVATIVE FILTERS

This appendix contains additional examples of derivative

filters. The value of time at which each was calculateC in

found in the figure caption.

Figure 65. Time slice 1. Figure 66. Time slice 3.

Figure 67. Time slice 8. Figure 68. Time sli-a 18.

74

Figure 69. Time slice 23. Figure 70. Time slice 28.

Figure 71. Ti-,,e slice 38. Figure 72. Time slice 58.

75

APPENDIX C. DETAILED EXPLANATION OF OPTFIL

This explanation addresses in detail the first module of

the program--OPTFIL. Its primary function is to calculate the

required Bessel filters for use by OPTPROP in completing the

diffractive field calculations. This discussion assumes some

knowledge of MATLAB programming and a familiarity with the

information already presented. Refer to Appendix E for a copy

of the code itself.

Initially, OPTFIL clears all variables in the work space

and deletes any previously generated output files. It may b."

desirable to comment out this latter command if only the size

of the transfo . space matrix is changing and not any of the

defining parameters. In that manner, for example, 64x64 sized

PROP matrices may be retained in their respective files while

a 128x128 sized solution set is developed. Given sufficient

space on the hard drive, two separate sets of data for a given

combination of defining parameters are available to be used.

Two sets will require the defining parameters to be saved in

separate files. This is explailed further below.

Next, the defining parameters are given specific values.

This is not a user interactive pr "dure because of the time

required to manually input nine variables per run when, in all

likelihood, there will be very few changes once a set of

76

parameters has been decided upon. The definition of each is

commented to the right of its respective variable.

Any matrix which will be generated during the run of the

module is initialized by defining its size via the "zeros"

command. The MATLAB User's Manual [Ref. 11] points out that

this is a time saving step. All are square matrices except

"rho mi" and "time" which have been designated vector matrices.

The "time" vector is next generated by the "linspace"

command. It divides the time period from z/c to timemax into

M-Step points. These are the values of time which will be

used in the argument of the Bessel function.

Now that all of the necessary variables have been defined,

including those needed by OPTPROP, the program saves them to

disk by the "save" command. The name of the file immediately

follows the command word and a space separates the file name

from the variable to be stored within it. Note that this

command allows multiple variables to be included within a

single file. In this case, OPTBES is the file name and N, M,

NO, Step, time, c, z, and t-eps are all stored. If a

previously generated set of Bessel functions with a different

size matrix is to be retained on the disk, a different file

name will be required. This is necessary to provide OPTPROP

with the proper value of N. OPTPROP will load the variables

as OPTPROP begins to run.

Calculation of the spatial radius, rho, was somewhat

tricky because of the varying size of the matrix quadrants.

77

The cartesian equivalents to radial values of rho are

ge., ated using the "meshdcm" command. This command is

oriented from the view of quadrant I. The shorter axis in the

case of an NxN final matrix has NO-i points (quadrant I is

NOx(NO-1)). The command "linspace" was again used to divide

the length of rho into NO-1 equidistant points to create the

vector "rhoim". However, a length of N points exists in other

quadrants which requires adding an additional increment of

"rho-m". The vector "rho mi" has this additional increment

added to it in the next line. "Rhox" and "rh.._y¥" are the

cartesian equivalents of the radial vector "rho mi" and they

are generated through the "meshdom" command. A matrix of

radial distance values called "row" (to differentiate it from

"rho") is created by applying the Pythagorean theorem to

"rhox" and "rhoy". This is done once outside the upcoming

loop rather than repeatedly within the loop.

The purpose of the loop is to sequence the Bessel argument

through the values of time contained in the time vector. M-

Step is the maximum number of time values and so the loop

progresses from m=l to mi=M-Step. The "fprintf" command

provides a screen display of the loop count for an indication

of the progress through the loop. The first PROP matrices to

be formed are those using the value of time within the time

vector. Recall that these matrices are delineated through a

suffix of "A". The full argument for the Bessel funcion is

defined as "arg" and it is within "arg" that the value of time

78

progresses. A temporary matrix called "temp" holds the result

of the Bessel operation on the "arg" matrix.

Taking advantage of the symmetry involved, the n. xt

sequence of instructions builds the full NxN matrix PROP from

the NOxNO matrix "temp". The first quadrant of PROP is formed

initially. Since it has dimensions of NOx(NO-1), all of the

row values of "temp" are used but only the first NO-1 columns.

To form the second quadrant (NOxNO) requires the entire "temp"

mattix "Temp" must be flipped about the center to maintain

the proper relationship of distance, and the command "fliplr"

accomplishes this. Now that the entire top portion of the

PROP matrix has been formed, the lower half is constructed by

flipping the upper half about the center row. Because the

bottom half has one less row than the top, only rows 2:NO are

flipped.

The next segment of the code correlates the PROP matrix to

the time index. The varianle "vname" is given the name

"PROP(m)A". "Vname" is then set equal to the PROP matrix

just formed. This result is stored to disk using the "save"

command in a file named "p(N)x(m)A". The variables PROP aticd

vname are cleared following this to save working space in RAM.

Note use of the preparatory command "eval" in performing these

last tasks.

This completes the code which generates the "A" PROP

matrices; a similar sequence of commands, with one exception,

forms the "B" PROP matrices. That exception is found within

79

the definition of "arg". The time value adds t-eps to that of

the value within the time vector. Recall that these "B"

PROP's are used to calculate the derivative filter via a

difference equation approximation.

80

APPENDIX D. DETAILED EXPLANATION OF OPTPROP

This explanation addresses in detail the second module of

the simulation--OPTPROP. Its primary function is to complete

the field strength calculation once provided the appropriate

Bessel filters generated by OPTFIL. This discussion assumes

some knowledge of MATLAB programming and a familiarity with

the information already presented. Refer to Appendix F for a

copy of the code itself.

Initially, OPTPROP clears all variables in the work space

and deletes any files no longer desired. Next, it loads from

disk the defining parameters specified in OPTFIL and contained

in the file "QPTBES" (if an additional file with different

paramerer- has been created in OPTFIL, ensure the proper name

-. •alled by OPTPROP). This latter step is done very 2imply

with the "load" command.

Following this, the excitation function is selected

through interactive screen text. The value of N is first

displayed as a reminder of the matrix size and the choice of

the four available input functions is presented. The "1disp"

command is used repeatedly to provide the numerous lines of

screen text. The desired excitation function (either circle,

table, circular Gaussian or circular Bessel) is selected by

keyboard entry of its respective excitation function number,

as shown on the screen ("enter" must be struck after the

81

number is typed). A series of "if" and "elseif" logic

statements follows which call the proper function "Im" file.

These function "Im" files numerically model the excitation

functions and copies of their code are found in Appendix G.

All the function "Im" files require either the diameter or the

width to be specified as part of the call information. This

information is again provided by the user interactively via

the keyboard. A default value is shown on the screen in

brackets. (Again "enter" must be keyed following the

selection.) This value of diameter or width must be an odd

number for the function "Im" file to run properly and there is

a reminder in the screen text to that effect. Input of an

even value will result in an error message and the program

OPTPROP will have to re-initiated. Other information may be

also be required as appropriate to the particular function.

For example, if the circular Gaussian excitation function is

designated, the screen text will ask for the desired standard

deviation, sigma.

The excitation function is pictorially displayed on the

screen by the "mesh" command and is titled 'SHFTINPUT'. It

is then changed into the corner geometry in preparation for

the two-dimensional Fourier transform operation. The

"fftshift" command performs the first action and the "fft2"

command accomplishes the second. Note that the result of any

particular operation on the input function can be pictorially

displayed by invoking the "mesh" command. As written in

82

Appendix F, the OPTPROP code has these subsequent "mesh"

commands included, but commented out. The transformed

excitation function, "F-input", is shifted back into the

center of the transform space in preparation of multiplication

with the Bessel filter (the appropriate PROP matrix). Now

called "Fshft input", it is equal to 9(x,y) in Equation 26.

The loop through the time vector commences at this point.

It begins with m=l and terminates at m=M-Step. The "fprintf"

statement provides a screen display of the progress of the

loop. The "A" file correlated to the time vector index inm" is

"p(N)x(m)A" . A new variable named "filenamel" is set equal

to the character string "p(N)x(m)A". File "p(N)x(m) B" is, in

essence, renamed "filename2" in a similar manner. This

renaming was done to simplify the upcoming commands.

"Filenamel" and "filename2" are loaded using -he "load"

command and a preparatory "eval" command. Each file contains

its respective PROP matrix (PROP(m)A/B). New matrices, named

"vnamel" and "vname2", respectively, are created having the

same values as PROP(m)A/B. This also was performed to

simplify upcoming commands.

"Fshftoutputl" is formed by the element by element

product of "vnamel" and "Fshftinput". It can be meshed and

the title will reflect the loop sequence number (the same

number as th' time vector index). An example of the

conversion from the .mat file to ASCII format is shown here.

There will be other upcoming steps which have this code for

83

the conversion incorporated also, but it will not be pointed

out any further. "Der_fil" is calculated by the difference

equation approximation method discussed in Chapter 3.

"Fshft output2" is the result of the element-by-element

product of "Der_fil" and "Fshftinput". At this point

"vname"li, "vname2", "Der-fil", and the PROPA/B pair are

cleared to free RAM.

To prepare for the two-dimensional inverse Fourier

transform operation, both "Fshft outputl" and "Fshft output2"

are moved to the corner geometry, again by the "fftshift"

command. This results in "F_outputl" and "F output2" being

formed. Both the inverse transform operation and

multiplication by the anpropriate constants are done in the

next step to produce "outputl" and "output2". Each is shifted

to the center geometry prior to the addition of the two being

performed. The sum of "shft_outputl" and "shft_output2" is

called "shftoutput". The "'abs" command is applied to take

the magnitude of "shft output" and the result is designated

"shftoutabs". Recall that the magnitude of "sbPt output" is

necessary to properly illustrate the output of a square law

optical detector.

At this point the NO or center row of "shft outabs" is

saved in the m+Step column of a new matrix called outputplot.

MATLAB automatically puts zeros into the elements of the first

"Step" number of columns. (Recall that this si;,i3.ates the

Heaviside step function.) The code provides the option to

84

similarly view the magnitude over time of "shftoutputl" or

"shft_output2" to facilitate the analysis of either.

"Outputplotl" and "outputplot2" are the respective matrices

formed. The end of the loop has now been reached.

When the loop has sequenced through all the values of time
in the time vector and the matrix "outputplot" is complete,

the data is stored to disk in a file named "o(d)x(M). The "o"

signifies output, "d" is the diameter or the width of the

excitation function, and "M" is the total number of time

slices including Step. An example of this filename is

"o17x64". Note that there is no indication of the specific

type of excitation function used, only the diameter or width

is specified in the filename. Th.s file saved to disk allows

access later to the completed vti-tput whether for view,

plotting, etc.

Last comes a series of mesh :?lots to rovide viewing

"outputplot" from several aspect angles. The "subplot"

command sets uip two half-screen views rotated ninety degrees

from each other. This display is kept on the screen for five

seconds by the "pause" comm- I before a full screen look is

generated. This complezes OPTPROP.

85

APPENDIX E. SOURCE CODE FOR OPTFIL

This appendix contains the source code for OPTFIL. The

code is written using the MATLAB software package.

OPTFIL

%% OPTFIL.M
%% This program generates the Bessel filter.
%% June 6,1992
clear;
%!del p*x*.mat
N = 64; % size of square array
M = 64; % number of time slices
NO = (N/2)+l; % defines center of the square array
Step = 3; % number of leading zerc time slices.
z = 80e-3; % distance to the observation plane
time max = .95e-9; % time at the final time slice
rho = 200; % spatial radius of the filter
(sqrt(rhox^2

% + rhoy^2)]
c = 3e8; % velocity of the light wave
t_eps = 23.5e-25; % time difference for the differential

%% Initialize matrices to save processing time
PROP = zeros(N);
temp = zeros(NO);
arg = zeros(NO);
rho m = zeros(NO,1);
row = zeros(NO);
time = zeros (M-Step,l);

%% Ge.,erate M-Step time slices between z/c and timemax.
time = linspace(z/c,time max,M-Step);

%% Save those variables necessary for OPTPROP.m in a file
%%called OPTBES.
save OPTBES N M NO Step time c z t_eps;

%% Generate NO-1 values of rho m from 0 to rho.
rho_m = linspace(O,rho,NO-1);

%% Add additional increment to rho m to compensate for the
%%off-center orientation of the final NxN matrix
rho m = [rho m (rho m(NO-!)+rho m(2))];

86

%% Create two NO x NO arrays of rho values for -unction
%%evaluation.
[rhox,rhoy] = meshdom(rho-m,rho m);

%% Calculate matrix of radial distance values outside the loop
row = sqrt(rhox.A2 + rhoy.A2);

for m = 1:M - Step %%%%%%%%%%START LOOP%%%%%%%%%%
fprintf('%3.Of',m); %show m value on screen

%% Generate PROP matrices with suffix of "A" corresponding
%% to the values of the time vector
%% Create an NO x NO array of argument values for the
%% bessel function

arg = row * sqrt(cA2*(time(m))A2-zA2);

% Evaluate J_0 at each argument value; creates an NO x NO
% array
temp = besseln(o,arg);

% Create PROP matrix containing the Bessel filter data
PROP(1:NO,NO:N) = temp(1:NO,1:NO-1);
PROP(l:NO,1:NO) = fliplr(temp);
PROP(NO:N,I:N) = flipud(PROP(2:NO,1:N)'-

%Correlate the name of the variable PROP with the time
%index;ie, PROPlA. PROP2A,...
vname = ['PROP',int2str(m),'A']; %set up name
eval([vname,'= PROP ;']);

%save applicable PROP in a file named p(N)x(m)A;.e.g.,
%PROP5A in p64x5A
eval(['save p',int2str(N),'x',int2str(m),'A',' ',vname]);
eval(['clear PROP ',vname]);

%Generate PROP matrices with suffix of "B" corresponding
%to the values of the time vector + teps

% Create an NO x NO array of argument values for the
% beesel function
arg = row * sqrt(cA2*(time(m)+tc ps)A2-zA2);

% Evaluate J_0 at each argument value; creates an NO x NO
% array
temp = besseln(O,arg);

% Create PROP matrix containing Bessel filter data
PROP(1:NO,NO:N) = temp(i:NO,1:NO-1);
PROP(I:NO,1:NO) = fliplr(temp);
PROP(NO:N,I:N) = flipud(PROP(2:NO,1:N));

87

%Correlate the name of the variable PROP with the time
%index;ie, PROPiB, PROM2B....
vname = ['PROP',int2str(m),'B'J; %set up name
eval (vname, '=PROP ;')

%Save applicable PROP in a file named p(N)x(m)B;e.g.,
%PROP6B in p64x6B

eval(t'clear PROP ',vname));

end %%%%%%%%END LOOPM%%%%%%

88

APPENDIX F. SOURCE CODE FOR OPTPROP

This appendix contains the source code fcr OPTPROP. The

code is written using the MATLAB software package.

OPTPROP

%% OPTPROP.m performs transient optical wave propagation
%% simulations. It uses the NxN arrays "p(N)x(m)A/B" to
%% compute the propagation transfer funct-on.
%% June 2, 1992
%% Size of the variables
%% NxN -- input functions; M-Step -- time slices.
%% NxM--outputplot

clear;
!del opt*.met
%!del optder?.dat

%% Load the defining parameters specified in OPTFIL.m
load OPTBES.MAT

%% Generate the INPUT function; plot it.
N
disp('N is the width of the base for each function')
disp(' ')
disp('Please select the excitation function')
disp(' 1 - Circle I
disp(' 2 - Table ')
disp(' 3 - Circular Gaussian ')
disp(' 4 - Circular Bessel ')
disp(' ')
disp(' Please strike "Enter" after selection.')
disp(' ')
disp(' Default values are in [].')

input-func = input('Please enter an excitation function
number [1] ');

if isempty(inputfunc)
inputfunc = 1

end

if input func == 1,
d = input('Please enter ODD diameter, [13), d =);
if isempty(d)
d = 13
end

89

shftinput = crcle(dN);

elseif input func == 2,
w = input('Please enter ODD width, (253, w =

if isempty(w)
w=25
end
shftinput = table(wN);
d = w;

elseif input func = 3,
sigma = input('Please enter the standard deviation, (12],

sigma= ');
if isempty(sigma)
sigma = 12
end
d = input('Please enter the ODD diameter, (25], d =

if isempty(d)
d=25
end
�hftinput = crcgaus(sigmadN);

elseif input func == 4,
a = input('Please enter the width scaling factor, (1), a= ');
if isempty(a)
a=1
end
d = input('Please enter the ODD diameter, [25], d =

if isempty(d)
d = 25
end

= shftinput = crcbess(adN);

else
error('Incorrect Excitation Function Selection')
end
mesh (shft input) ;title ('SHFT INPUT');

%following code used to enable print function and save
%data to disk

%meta optin
%pause (1)
%clg
%vname = ('shft input');
%eval((save opshftin ',vname])
%eval (['save opshftin.dat ',vname,' /ascii'])

%% Shift input quadrants and take the 2-D FFT to produce
%% FINPUT.

= input = (fftshift(shftinput));
%following code used to observe and save data to disk

%mesh(input) ;title('INPUT ')

90

%pause(l) ;clg
%vname = ['input'];
%eval(['save optin ',vnameJ)

-. %eval(('save optin.dat ',vname,' /ascii'J)
Fý_input = fft2(input);

%mesh(F input) ;title('F_INPUT ')
%pause(l) ;clg

%% Shift F input in preparation of multiplication with PROP
Fshft inpu-t = fftshift (F input);

%mesh(Fshft input) ;title('FSHFTINPUT 1)
%pause(l) ;m~eta optfin;clg

%% Plot the absolute value of the (shifted) transform for
%% viewing only

%mesh(abs (Fshft-input)); title C'ABS (FSHIFTINPUT)')
%pause(l) ;clg

%% Array-multiply the shifted transfer function PROP and
%%Fshft input.

disp('Performing array multiplication....'1);
for m = :M-Step

%%%%%%%%%%Start loop%%%%%%%%%%%
fprintf('%2.Of, ',m)

pause(l)
filenamel = ['p',int2str(N),'x',int2str(m),'A' 1
eval(['load ',filenamelj);
filename2 = ['p',int2str(N),'x',int2str(m),'B' 1
eval(['load ',filename2));
eval(['vnamel = PROP',int2str(m),'A','OI]);
eval(['vname2 = PROP',int2str(m),tB',,';');
Fshft -outputl = (vnamel . * (Fshft -input));

%following cod~e used to observe at given time slice (in)
%and save data to disk

% if m == 46
% ~mesh(Fshft outputl);
% ~title(['FSHiFTOUTPUT1 (',int2str(m),')'))
% pause(l)
% meta opti;

% ~ vname = ['F -outil,int2str(m)];
% eval ([vname, '=Fshft -outputl ; '])
% ~eval(['save optfl 1,int2str(m),' ',vname])

% eval(['save optfil',int2str(m),'.dat l ,vname,'
% /ascii'J)

o end

Der-fil =((vname2/(time(m)+t teps)) - (vnamel/time(m))) ...
/teps;

%following code used to observe at given time slice (mn)
%and save data to disk

91

9- ifm=46

mesh(Der Ifil);
title([1DER-FIL (I,int2str(m),')I))
pause(1)
meta optdir;

vname = ('Der fil', int-2str(m)];
eval([vname,';=Der 'fJl ,1]))1
eval(['save optdir' ,ir~r2str(m),' ',vnaxne))
eval([Isave optdir *int2str(m) ,'.dat l,vname,l

/asciigJ)
end

* Cig

Fshft output2 = Der f ii . *(Fshft input);
%following code used *%-o observe at given time slice (m)
%and save data to disk

* if m ==46
mesh (Fshft-output2)

o ~title(('FSHFTOUTPUT.2 (',int2str(m) , t)])
o pause(l)
* meta opt2

* vname = rIF-out2',int.2str(m)J;
9- eval([vname,'=Fshft-output2 ;'])
* eval(r'save optf2 ',int2str(m),' ',vname])
*eval(['save optf2'1,int2str(m) ,'.dat ',vname,'
* /ascii'])

end
cig

%%Clear unnecessary variables to free RAM
clear vnamel; clear vname2; clear Der f ii;
eval(['clear PROP',int2str(m),'A',';']);
eval(['clear PROP',int2str(m),'B',I;'fl;

%%Shift Fshft -output(l,2) to corner geometry prior to
%%taking the IFFT2
F-Outputl = fftshift (Fshft-outputl);
% mesh (]Foutputl) ; title (' FOtTTPUT1 '

* pause(l);
* cig;

F-output2 = fftshift (Fshft-output2);
o mesh (Fýoutput2) ; title (F-OUTPUT2 ');
9- pause(l);
% clg;

%% Take IFFT of F output(l,2) and multiply each by its
%% respective constants to produce the outputs
outputl = (if ft2(Ffýoutputl))* 2 *z/ ((CA2)*(time (M)A 2)))

0. mesh (outputl); title('OUTPUTl 1);
% pause(l);
% clg;

92

output2 =(ifft2(FoutpUt2))*(2*z/ (CA 2));
mesh (output2) ; title (OUTPUT2 ');
pause(l);
cig;

%%Shift output(l,2) prior to summation
-'shft -outputl = fftshift(outputl);

%following code used to observe at given time slice (mn)
%and save data to disk

if == 46
mesh (shft outputl)
title(['SRFT_-OUTPUT1 (',int2str(m),')'])
pause(l);
mneta optouti

vname = ['outil,int2str(m)J;
eval([vname,'=shft -outputl ;'])
eval(('save opti_',int2str(m),' 1,vnaine])
evalQf'save optI-',int2str(m) ,'.dat ',vname,'

/ascii' J)
end
cig;

shft output2 = fftshift(output2);
%followi~ng code used to observe at given time slice (mn)
%and save data to disk

if M== 46
mesh (shft output2)
title(['SHFTOUTPUT2 (',int2str(m),')'])
pause(l)
meta optout2

vname = ('out2',int2str(m));
eval((vnaine,'=shft -output2 ;1])
eval(['save opt2_',int2str(in),' ',vname])
eval(['save opt2_',int2str(in),'.dat ',vnaine,'

/ascii' J)
end
cig

%% Calculate the shifted output
shft output = shft outputl + shft-Output.2;

%following code-used to observe at given time slice (mn)
%and save data to disk

if m== 46
mesh (shft output);

o ~title(['SHFTOUTPUT (',int2str(m),')'))
o pause~i)

meta optout
vname = ['out',int2str(m)];

oeval([vname,'=shft -output ;'])
0vl[sv p31itsrm, ,nm]

eval(['save opt3_',int2str(m),'~a ',vname])

/ascii'])

93

end
cig

%%View the magnitude of the shifted output
shft, -outabs = abs (shft output);.
%following code used to observe at given time slice 'm)
%and save data to disk

if m== 46
mesh (shtt output);

title(('J4AG SHFTO--,TPTY± (',int2str(m),I')])
pause(l)
meta optabs

vname = ['outibaz',int2str(m));
eval (vname, '=shft., utabs ;11)
eval(['save optab- int2str(m),' ',vname))
eval(q'sa,ýe optab - ,int',str(m) ,'.dat ',vname.,*

/asciiJ))
end
clg

%% Save the NO " ,f th~e ra,ý:rdtude of the shifted ou-,Iputl
%% in the m/2 C.: ~r of~ ouj lut.plotl.

%% Save the NO row cf. the : -.-xcude of the shifted outpUt2
%% in the m/2+Step column i~t output~plot2.
output~plot2 (l:N,m, Step) =abs(shft-outp~ut2 ('O,l:N)) I;

%% Save the NO row o--- he magnitude of the shifted output
%% in the m+Step column of outputyplot.

oupuplot'l:N,m+S.,ep) = -.bhft outabs(NO,l:N)';

end
%% %%%% %End loop %%%%%%%%%%%%%%%%%%%%

% ~Save ccntents ct "outputyplot" as NxM array.
f ilename = [Io I, int2str (d) , Ix I,int2str (M)] % File: o (d) x(M)
eval (['save 1,filename,' output~plot' J);

%% Plot the absolute value of "otutput~plot".
subplot(121), mesh(rot9O(output~plot,l));
subplot(122), mesh(rot9O(output~ylot,2));
pause (5)
%% Plot full screen view
ci g;
mesh(rot9O(output~plot,3));

94

APPENDIX G. SOURCE CODE FOR EXCITATION FUNCTIONS

This appendix contains the source code for each of the

four excitation functions. These functions are the uniform

circular and uniform square functions, and the circular

Gaussia•, and circula- Bessel functions.

UNIFORM CIRCULAR EXCITATION FUNCTION

function Y = crcle(d,N)
CRCLE.M: Y = crcle(d,N)

% Program for generating uniform circular excitation functions
d is the DIAMETER of the circle. (ODD integer)
N is the WIDTH of the square base. (EVEN integer)
Example: z = crcle(33,64);

%M%% JG Upton March, 1992

Check that d is an odd integer
if rem(d,2) < 0.1;
error('The diameter of the crcle function must be an ODD

integer.');
else;
end;

Check that N is an even integer
if rem(N,2) -= 0.0;
error('The width of the square base must be an EVEN

integer.');
else;
end;

NO = (N/2)+l; %NO is the center location
r = d/2; %r is the radius
Y = zeros(N);
temp = zeros(NO-1);

for m = l:r+l;
for n = l:r+i;

if sqrt((m-i)^2 + (n-l)A2) <= r;
temp(m,n) = 1;
end;

end;
end;

95

Y(NO:N,NO:N) = temp;
Y(2:NO,NO:N) = flipud(temp);
Y(2:NO,2:NO) = rot90(temp,2);
Y(NO:N,2:NO) = fliplr(temp);
%%%%%For testing purposes: mesh(Y)

UNIFORM SQUARE EXCITATION FUNCTION

function Y = table(w,N)
% TABLE.M: Y = table(w,N)
%Program for generating a uniform square excitation function.
% w is the WIDTH of the table. (ODD integer)
% N is the WIDTH of the square base. (EVEN integer)
% Example: z = table(33,64);
%%%%% JG Upton March, 1992.

Check that w is an odd integer.
if rem(w,2) < 0.1;
error('The width of the table must be an ODD integer.'):
else;
end;

% Check that N is an even integer
if rem(N,2) -= 0.0;
error('The width of the square base must be an EVEN

integer.');
else;
end;

NO = (N/2)+I; % NO is the center
location
wO = ceil(w/2); % wO is the mid-point of
the table
Y = zeros(N);
temp = zeros(NO-1);
temp(l:wO,1:wO) = ones(wO);

Y(NO:N,NO:N) = temp;
Y(2:NO,NO:N) = rot90(temp);
Y(2:NO,2:NO) = rot90(temp,2);
Y(NO:N,2:NO) = rot90(temp,3);
%%%%%For testing purposes: mesh(Y)

CIRCULAR GAUSSIAN EXCITATION FUNCTION

function Y = crcgaus(sigma,d,N)
% CRCGAUS.M: Y = crcgaus(sigma,d,N)

96

%oProgram for generating circular Gaussian ::.tation
functilons.
%sigma is the STANDARD DEVIATION of the gaussian iunction.
%d is the DIAM4ETER of circle. (ODD integer)

% N is the WIDTH of the square base. (EVEN integer)
% Example: z =crcgaus(12,33,64);

%%%%%JG Upton March, 1992.

mu=0O; %mu is the mean of the
gaussian function

% Check that d is an odd integer.
if rem(d,2) < 0.1;
error('The diameter of the circle function must be an

ODD integer.');
else;
end;

% Check that N is an even integer.
if rem(N,2) -=0.0;
error('The width of the square base must be an EVEN

integer.');
else;
end;

NO = (N/2)+1; % No is center location;
r = d/2; % r is the radius
Y = zeros(N);
temp =zeros(NO-1);

for m = :(d+l)/2:
for n = 1:(d+l)/2;

x = sqrt((M-1)A 2+(n-1)A 2);
if x <= r;
temp(m,n) = (1/(sqrt(2*pi)*sigma))*exp(-((X-mu)A2)/...

(2*(sigma A2)));

end;
end;

end;

Y(NO:N,NO:N) = temp;
Y(2:NO,NO:N) = flipud(temp);
Y(2:NO,2:NO) = rot9o(temp,2);
Y(NO:N,2:NO) = fliplr(temp);
%%%%or testing purposes: mesh(Y)

97

CIRCULAR BESSEL EXCITATION FUNCTION

function Y = crcgaus(sigma,d,N)
b CRCGAUS.M: Y = crcgaus(sigma,d,N)
%Program for generating circular Gaussian excitation
functions.
% sigma is the STANDARD DEVIATION of the gaussian function.
% d is the DIAMETER of circle. (ODD integer)
% N is the WIDTH of the square base. (EVEN integer)
% Example: z = crcgaus(12,33,64);
%%91%% JG Upton March, 1992.

mu=O; %mu is the mean of the
gaussian function

% Check that d is an odd integer.
if rem(d 2) < 0.1;
error('The diameter of the circle function must be an

ODD integer.');
else;
end;

% Check that N is an even integer.
if rem(N,2) -= 0.0;
error('The width of the square base must be an EVEN

integer.');
else;
end;

NO = (N/2)+I; % NO is center location;

r = d/2; % r is the radius
Y = zeros(N);
temp = zeros(NO-1);

for f. = l:(d+l)/2;
for n = I:(d+l)/2;

x = sqrt((m-1) ^2+(n-i)^ý2) ;
if x <= r;
temip(m,n) = (i/(sqrt(2*pi)*sigma))*exp(-((x-mu)A 2)/...

(2* (sigmaA2)));
end;

end;
end;

Y(NO:N,NO:N) = temp;
Y(2:NO,NO:N) = flipud(temp);
Y(2:NO,2:NO) = rot90(temp,2);
Y(NO:N,2:NO) = fliplr(temp);
%%%%%For testing purposes: mesh(Y)

98

CIRCULAR BESSEL EXCITATION FUNCTION

function Y = crcbess(a,d,N)
% CRCBESS.M: Y = crcbess(a,d,N)
% Program for generating circular Bessel exci':ation functions.
% a is the WIDTH SCALING FACTOR.
% d is the DIAMETER of the circle. (ODD integer)
% N is the WIDTH of the square base. (EVEN integer)

Example: z = crcbess(l,33,64);
J.G. Upton March, 1992

Check that d is an odd integer.
if rem(d,2) < 0.1;
error('The diameter of the circle must be an ODD

integer');
else;
end;

Check that N is an even integer.
if rem(N,2) -= 0.0;
error('The width of the square base must be an EVEN

integer');
else;
end;

NO = (N/2)+l; %NO is the center
location
r = d/2; %r is the radius of the
circle
Y = zeros(N);
temp = zeros(NO-1);

for m = 1:r+l;
for n = l:r+l;

x = sqrt((m-l)A2 + (n-l)A2);
if x <= r;
temp (m, n)=besseln(O,a*x);
end;

end;
end;

Y(N0:N,NO:N) = temp;
Y(2:NO,NO:N) = flipud(temp);
Y(2:NO,2:NO) = rot90(temp,2);
Y(NO:N,2:NO) = fliplr(temp);

%%%%%For testing purposes: mesh(Y)

99

LIST OF REFERENCES

1. J. W. Goodman, Introduction to Fourier Optics. San
Francisco, CA: McGraw-Hill, Inc., 1968.

2. D. Guyomar and J. Powers, "Propagation of transient
acoustic waves in lossy and lossless media," in Acoustical
Imaging Volume 14, A. J. Berkhout, J. Rider, and L. F.
van der'Wal, Eds. New York, NY: Plenum Press, 1985, pp.
521-531.

3. D. Guyomar and J. Powers, "A Fourier Approach to
Diffraction of Pulsed Ultrasonic Waves in Lossless Media",
in Journal of Acoustical Society of America, vol. 82 no.3,
pp. 354-359 (1987).

4. J. Powers and D. Guyomar, "Propagation of Transient Scalar
Waves: A Fourier Optics Approach, In preparation.

5. T. Merrill, "A Transfer Function Approach to Scalar Wave
Propagation in Lossy and Lossless Media", Master's Degree
Thesis, Naval Postgraduate School, March 1987.

6. P. R. Stephanishen, "Transient radiation from pistons in
an infinite planar baffle", in Journal of Acoustical
Society of America, vol. 49, pp. 1629-1637 (1971).

7. P. R. Stephanishen, "Acoustic transients in the far-field
of a baffled circular pistcn using the impulse response
approach", J. Sound Vib., vol. 32, pp. 295-310 (1974).

8. P. R. Stephanishen, "Acoustic transients from planar
axisymmetric vibrators using the impulse response method",
Journal of Acoustical Society of America, vol. 70, pp.
1176-1131 (1981).

9. P. R. Stephanishen and G. Fisher, "Experimental
verification of the impulse response method to evaluate
transient acoustic fields", Journal of Acoustical Society
of America, vol. 69, pp. 1610-1617 (1981).

10. G. R. Harris, "Review of transient field theory for a
baffled planar piston", Journal of Acoustical Society of
America, vol. 70, pp. 10-20 (1981).

11. MATLAB for MS-DOS Personal Computers, User's Guide by The
MathWorks, Inc., Natick, ME (1990).

100

12. AXUM, Technical Graphics and Data Analysis, User's Manual
by TriMetrix, Inc., Seattle, WA (1989).

101

BIBLIOGRAPHY

1. R. M. Bracewell, The Fourier Transform and Its
Applications. San Francisco, CA: McGraw-Hill, Inc.,
1965.

2. E. Oran Brigham, The Fast Fourier Transform and Its
Applicatons. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1988.

3. Partha P. Banerjee and TingChung Poon, Principles of
Applied Ontics. Boston, MA: Irwin, Inc., and Aksen
Associates, Inc., 1991.

4. A. V. Oppenheim and A. S. Willsky with I. T. Young,
Signals and Systems. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1983.

5. C. A. Balanis, Advanced Engineering Electromagnetics. New
York, NY: John Wiley and Sons, 1989.

102

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5002

4. Professor John P. Powers, Code EC/Po 4
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5002

5. Professor Ron J. Pieper, Code EC/Pr 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5002

6. Commandant of the Marine Corps 1
Code TE 06
Headquarters, U. S. Marine Corps
Washington, D.C. 20380-0001

7. LtCol. John G. Upton USMC 2
One Surf Way #123
Monterey, California 93940

A

103

